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Abstract. A critical part of the billet spray-forming process is the successive intermittent deposition of thin layers 
of semi-solid aluminium alloy at different points on the top surface of the billet. Each thin layer is made up 
of a large number of impacted semi-solid spray droplets. As successive layers of alloy are deposited significant 
re-melting and re-freezing of underlying layers can occur. If the layers become too dry, high porosity will result; if 
they are too wet, fluid dynamic surface instabilities are possible. In extreme cases no billet will form. The process 
is essentially incremental, so that heat fluxes within the deposit very close to the top surface play a major role in 
determining the final deposit microstructure. 
In this paper transient heat transfer and solidification processes in the billet are analysed. First, some general features 
of billet heat transfer are discussed. The focus then narrows onto a thin layer of the deposit, lying very close to the 
billet surface. A boundary layer approximation is derived and computational results from this approximation are 
used to answer a number of questions of high practical value. 
Key words: Spray-forming, solidification, thin layering 

I. Spray-forming 

Spray-forming is a metal manufacturing process which is capable of producing large bulk 
deposits of various alloys. With careful control, rapidly solidified near-net shape deposits can 
be produced which have significantly improved microstructural and mechanical properties, 
(see e.g. [1, 2, 3, 4, 5, 6, 7, 8]). 

In the billet spray-forming process a molten metal stream is first atomised by high speed 
gas jets and is then deposited onto a circular collector plate. The collector plate is positioned 
some distance from the atomiser, it rotates about a vertical axis and is withdrawn slowly 
downwards at a controlled speed. Usually, the metal spray is directed in towards the rotational 
axis and oscillates, so as to distribute the metal in a prescribed way. Provided the oscillatory 
motion of the spray and the rotation of the billet do not synchronise, a cylindrically shaped 
billet forms after a sufficiently long time, Fig. 1. 

Spray-forming avoids many safety and contamination problems associated with production 
of dense bulk aluminium deposits by a powder metallurgy route. An inert gas is used to atomise 
the liquid metal and the bulk metal is wholly formed in a sealed chamber. Thus, the inclusion 
of exceptionally high levels of either reactive alloying elements, (e.g. lithium, [9]), and/or 
reinforcing particulate, (e.g. silicon, [8]), is possible. Advantages of spray-forming over more 
conventional casting methods are offset by greater production costs, lower throughputs and 
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Fig. 1. Schematic of an aluminium billet spray-forming plant 

more difficult process control. However, these disadvantages are outweighed by significant 
mechanical and microstructural improvements, which provide the main motivation for the 
production method. 

Solidification of spray-formed deposits has been investigated widely for deposits which 
are somehow "thin" and/or one-dimensional, e.g. tubes, strip and discs [10, 11, 12, 13, 14, 15, 
16, 17]. This means that intermittent deposition/layering at the deposit surface is able to affect 
heat flow within the entire deposit. In the case of a billet, the bulk deposit is large relative to 
the diffusive length-scales of aluminium alloys on the timescale of the intermittent deposition, 
and should remain largely unaffected by thin layering. 

The deposition stage of the process, when the spray impacts the billet surface, is probably 
the least understood but also most critical stage of the process. Typical spray-formed alumini- 
um alloys release their latent heat of freezing over a wide temperature range, (e.g. 50 - 100°C 
is not uncommon). If all the spray droplets are fully solid on impact they will not adhere to 
the billet surface, (which will be colder and drier than the spray). Equally well, a fully liquid 
deposit is very likely to be spun off the rapidly rotating collector. Therefore, one requires the 
spray to be partly liquid on deposition. Note however, that additional heat in the spray results 
in additional heat flowing into the billet, affecting both the surface condition and the spray 
condition at the point of impact. This suggests that the process will be relatively sensitive to 
changes in the heat of the depositing spray. 

Assuming that one has a reasonably solid "mush" on the billet surface, so that the billet 
forms satisfactorily, one must still be very careful to avoid porosity development. Porosity in 
spray-forming is not usually extreme but since high end-product quality is here paramount, 
porosity can be a major processing concern. As discussed by Lavemia [18], porosity can 
form due to both the billet/spray being "too dry", (intersticial pores are found), and due to 
the billet/spray being "too wet", (gas may be trapped in the billet, probably resulting from 
surface fluid instabilities). The morphology of both types of porosity is distinct and although 
quantitative understanding of what "too dry" and "too wet" actually mean is largely lacking, 
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qualitative understanding is quite good. Mathur distinguishes four operational regimes, with 
deposit formation only occurring in the middle two, [15]. For "dry" deposition, partially 
solidified droplets impact the surface separated by a time interval which is larger than that 
required for droplet solidification. The droplets do splat and weld together, but the grains are 
columnar and do not extend across boundaries inter-splat boundaries. Interstitial microporosity 
is often observed at inter-splat boundaries. "Wet" deposition occurs when the surface does 
not fully solidify between impacts, but a high solid fraction present in the surface mush still 
restricts lateral fluid flow. Inter-splat boundaries are not visible, porosity is minimal and the 
grains are equiaxed. Singer and Evans have attempted to quantify this distinction, [19]. 

There are clearly many different degrees of "dry" and "wet" deposition, and although 
the "wet" regime is in some sense optimal, experience suggests that for many materials the 
operating window between this regime and the two types of porosity formation, (i.e. "too 
wet" or "too dry"), is relatively narrow, [20, 21]. As well as influencing porosity levels, the 
cooling rates close undemeath the billet surface will control microsegregation and also will 
strongly influence the grain size. Perhaps it should also be mentioned that from the commercial 
point of view "optimal" means producing a material with the mechanical properties which the 
customer wants; micro-structure is in this sense an invisible intermediate parameter. 

For the above reasons, an understanding of sub-surface heat flow is extremely important 
for the billet spray-forming process. In particular, one would like to understand how one can 
change the atomiser oscillation and rotation frequencies in order to effectuate desired changes 
in the heat flow. These frequencies are in a sense free parameters for the process. Common 
sense dictates only that the scanner and rotation motions do not synchronise and that the 
frequencies be fast enough that the spray deposition is averaged, (in a naive sense), over the 
surface. In [22, 23] a model for the averaged growth of axisymmetric billets was developed, and 
explored further in [24, 25]. In this model the effects of differing atomiser scanner frequencies 
and rotation rates do not appear at highest order, due to the averaging. Instead, intermittent 
layering on the surface is described by a "fast-time" perturbation of the averaged growth. In 
this paper thin layering effects are explored by computing the perturbed transient growth of 
the billet surface and coupling this with computation of the resulting transient sub-surface heat 
flow. An important question is how the averaged motions of the billet surface can affect the 
sub-surface heat flow, and whether this has implications for sensibly choosing a billet shape 
which is optimal in some sense. Ongoing research work [26] is aimed at the inverse problem 
of how to reliably design an atomiser scanning function which, when averaged, will produce 
a steady state billet crown of desired shape. 

The article is structured as follows. In the next section some general features of billet 
solidificiation are discussed. Section 3 derives a boundary layer approximation which controls 
heat flow close to the billet surface, during and after deposition of thin layers of spray. In 
section 4 computational results are presented showing how the boundary layer approximation 
can be used to gain a clear understanding of the sub-surface heat flow. The paper concludes 
with a discussion. Throughout, a hat (i.e. ^) is used to denote a dimensional quantity and bold 
typeface denotes a vector quantity. 

2. Billet solidification 

In agreement with other studies of spray-forming, (e.g. [10, 11, 12, 13, 14, 15, 27, 17] ), it 
is assumed that heat flow within the billet is dominated by conduction, The billet volume is 
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denoted by f~(f) and coordinates fixed to the collector are denoted by ~. The billet temperature 
satisfies 

0 f -  
where/-~/(T) and/((T) are the enthalpy and the thermal conductivity, respectively. For suitable 
liquid fraction functions, ~/ is  a strictly monotone function of 7" and may instead be used as 
the main dependent variable. Equation (1) becomes 

o~ 
0~ = ~"[b(9)#7~(H)]' ~o ~ f~(t3, (2) 

where the diffusivity/) (/q) is a positive function defined by 

dr/" (3) 

The billet surface, 0ff(t), is described by 

af~.(f) = {~ E 7¢ 3 : J~(~,O = 0}, (4) 

where evolution o f f  is governed by the model in [22, 23]. The simplifying assumption is made 
that the molten spray droplets impinge and coalesce instantaneously I onto the infinitesimally 
thin surface layer. The net flux of heat across 0fl(~, due to deposition from the spray, at a 
point a~p E O~(f) which moves normal to the surface at speed % v '  is equal to 

%p [/Lproy - ~r(~p, t3], (5) 

where .f-'Ispray is the mass averaged enthalpy of the spray, (i.e. averaged over the local droplet 
distribution in the spray depositing at ~p). The billet surface is cooled by a combination of 
radiation and forced convective cooling from the atomising gas. 2 A linear heat transfer law is 
assumed to account for the net flux of heat out of f~ (0 due to combined cooling effects, i.e. 

hgas(~( f-I) - 7'gas), (6) 

where hga~ and Tgas are heat transfer coefficient and gas temperature, respectively. Combining 
(5) and (6) gives 

^ ^ O f /  ^ 
_D(H).-~n - ~ ( ~ )  7-O'~ = hgas[T(.f-I) - Tgas] + 9~,e[.f-Ispr,~y -_ft(~p,f)]; (7) 

the operator ~n denoting the partial derivative in the direction of the outward normal 0~2 (f). 
It should be remarked that the reality of depostion is extremely complicated, with each 

surface point experiencing irregularly interspersed time intervals during which droplet depo- 
sition and forced convective cooling are taking place. Thus, the validity of using (7), (as in 
[10, 11, 13, 14, 15, 27, 17]), although intuitively correct, is not proven. 

The line zo = 0 represents the boundary between billet and collector, where, due to 
shrinkage, there will be imperfect thermal contact, i.e. 

b Oq) o// ~_~ =_ R @ )  = h~ou~ao~(~(~)  - ~'~ou~ao~), (8) 
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2.1. NON-DIMENSIONALISATION 

The model equations are made dimensionless before any further analysis is carried out. The 
billet radius R is chosen as a length-scale and time is scaled with the period of rotation of the 
billet, 27r/&; usually 27r/& ,~ ts, where ts is the period of the atomiser scanning motion. The 
solidus and liquidus temperatures, freezing range, liquid and solid phase thermal conductivity, 
density and specific heat capacity, are denoted by Ts, Tl, AT ,  Kt, Ks, [~ and ~, respectively; 
the latter three quantities are measured at close to the solidus temperature. Dimensionless 
enthalpy, diffusivity and temperature functions are defined by 

H = [ - I -  -f-Is D(H)  = ~c D([-I), T ( H )  - T([-I) - Ts 
~ A T  ' Ks AT ' (9) 

where/:/s is the solidus enthalpy. One sees that the alloy is fully solid for T <_ 0 or H _< 0, 
and is fully liquid for T > 1 or H > 1 + L._~, where L is the latent heat of freezing For 

- -  - -  ~ A T  . " 

many aluminium alloys which are typically sprayed the non-dimensional quantity 

L 
^ ~ , ~ 3 .  

~AT 

This represents the ratio of latent heat to specific heat which is released during freezing. In this 
paper intra-alloy variations are not explored and attention is instead confined to a somewhat 
typical alloy, 3 with non-dimensional functions T ( H )  and D(H)  as illustrated in Fig. 2. Other 
relevant thermophysical data for this alloy is given in Table 1. 

Equations (2), (7) and (8), describing heat flow within the billet on the rotation timescale, 
become 

OH e 
- V.[D(H)~TH],  x • ff(t), (10) 

Ot Pe  

-D(H)Z-~--c~H _ Bgas(T(H) _ Tgas) + P e v x p ( H  -Hspray),  x E Off(t) " z > O, 

(1]) 
OH 

D(H)  Oz = BcoUeaor(T(g) - Tcoltector), x • Off(t) " z = O. 

(12) 

Billet growth is governed by the model in [22, 23]; VXe is given by 

vxp - OFt iVFl_l, 

where the billet surface F ( x ,  t) = 0, satisfies 

1 
OF (x , t )  = 7(f izgk ' ,F)fn( t )g(r '[x , t])k ' ( t ) .~TF(x, t ) ,  x E Off(t). (13) 

e Ot 

In (13) 7 is a simplified shadowing coefficient and rh(t) is the mass flow rate through the 
atomiser. The coordinate r' measures distance perpendicular to the spray cone axis, and k' 
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Table 1. Alloy thermophysical parameters 
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Fig. 2. Temperature and diffusivity functions for a typical aluminium alloy; a) T(H), b) D(H). 

is the unit vector in the direction of the spray cone axis at time t. The function 9(/) defines 
the mass flux distribution within the spray cone, which is itself defined by r '  E [0, rs). All 
functions are non-dimensional. These terms are explained fully in [22, 23]. 

2.1.1. Dimensionless groups 

The two dimensionless groups that appear above in (10) are 

2rrOo 
-= &0R << 1, 

which is the ratio of the rotation and withdrawal timescales, and 

(14) 

  Cr0h h 2. 
-- = (~oo)- (--~--s) , (15) Pe Ks 

which is a Peclet number. It is the smallness of e which prompted the use of an averaging 
method in [22, 23, 24, 25]. The size of e essentially corresponds to the thickness of the thin 
layers deposited, relative to/~. 

After rescaling time with e in (10), it is seen that the Peclet number compares the relative 
importance of conduction and convection within the bulk billet. Convective effects in this 
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context are due to billet growth, which occurs at a rate ~ U0. An alternative interpretation 
of the Peclet number is as the ratio of the timescales for conduction/solidification and for 
billet growth. A large Peclet number would imply that the solidification timescale is longer 
than the growth timescale resulting in a billet with a high liquid fraction. Conversely, a small 
Peclet number would imply that heat flowing in through the billet crown is rapidly dissipated 
in the bulk of the billet. The billet may in this case be very dry. Not surprisingly, for typical 
production parameters Pe = Os (1). In Fig. 3 are plotted values of R/Uo against pcR2/Ks, 
for a number of successful spraying production runs 4 of the aluminium alloy in Fig. 2 and 
Table 1. 

In the boundary condition equations (11) and (12), Baas and Bcollector a r e  Biot numbers, 
defined by 

Bgas = [ZgasR 
Ks ' (16) 

hcol lec torR  
Bcolleetor - -  (17) Ks 

For typical alloys, process conditions and billet radii these can be estimated to have sizes 

0.3 < Bgas < 1.0, and Beollector ~ 2.0, (18) 

with the higher values of Bgas being experienced on the top surface of the billet, directly 
under the spray, where hgas probably attains a value hgas "~ 1000W/m2/°C. 

3. Boundary layer approximation 

There are severe practical limitations to the usefulness of equations (10)-(12) as a model. 
Analytic solution is clearly not possible, and numerical solution is quite infeasible. The 
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production mn timescale is O(e-i),  but the rapid changes occurring in (11) mean that a 
small timestep must be used in any numerical algorithm. Additionally, whereas in the bulk of 
the billet one expects only O(e) enthalpy changes to occur, it is clear from (11) that Os(1) 
changes do occur close to the deposition surface at least. Equations (10) and (11) suggest that 
the process close to the surface is governed by the "fast" rotation timescale. This motivates 
the following boundary layer approximation. 

Consider a point xp (t) = ( x p  (t), yp (t), Zp ( t ) ) ,  lying on the surface of the billet at time t 
and moving with instantaneous velocity 

dxp 
dt (t) = vxp(t)np(t), (19) 

where rip(t) is the unit outward normal vector to the billet surface at xp. 
The billet surface position is assumed to have an axisymmetric O(e) asymptotic approxi- 

mation, uniformly valid on the timescale e - l ,  given by the averaged equations of the model 
developed in [22, 23], i.e. 

F(xo,,7, t) ~ Fo(r, z, ~) + 0(~), (20) 

where (r, z) are cylindrical polar billet coordinates and r/denotes the "slow-time" variable, 
r /=  et. Orthogonal unit vectors i(t), j(t) and it(t) are chosen, fixed at xp, such that 

VFo(Xp, ~) -np( t )  + O(e), (21) 
~(t)  = IIVFo(xP,,1)ll  = 

with i(t) and j(t) then fixed arbitrarily to form a right handed system. Position with respect 
to the surface coordinate system is denoted 5:, where 

= ( i . [ xo -  xp],fi.[xo- xp],k .[xo-  xp]). (22) 

On the rotation timescale it is assumed that tangential thermal gradients 5 are O(1) and 
that thermal gradients normal to the surface vary on the diffusive length-scale, (e/Pe) 1/2. 
Transient heat flow is considered within an O((e/Pe)1/2) neighbourhood of xp. Distance 
5, in the direction of [¢ is rescaled with this length-scale, thus introducing a boundary layer 
coordinate (, defined by 

~, = (( ~._~__)1/2 (23) 
"Pe" " 

Retaining only terms of O(e 1/2) and larger, after a little algebra, equations (10) and (11) 
become 

OH Pe 1/2 OH 0 OH 
Ot + (--~-) Vxv 0¢ = ~--~[D(H)-~-], ¢ > o, (24) 

and 

-~i~)inBg.s(T(U) - T~s )  + ( )1/%x~ ( U  - Hspr.y),  ¢ = 0.(25) 

An O(e) approximation to the surface velocity is gained from substituting Fo(xo, rl) in the 
right hand side of (13), i.e. 

el OF_~ (xo, t) ~ 7(rhgk', Fo)rh(rl)g(r'[xo, t])k' (t).V Fo(xo, rl) + O(e). (26) 
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This may be used in (24) and (25) to give an approximate expression for vxp. Defining v(t) 
and/3 by 

v( t )  - 
(ePe) 1/27(¢ngk', Fo)rh(rl)g(r')k'(t).WFo = (Pe) l/2V~p O(£3/2), + 

IVFol c 
(27) 

/ 3  - (28) ./-'e 

the boundary layer approximation becomes 

OH OH 0 OH 
= -v(t)--a--;-. + -z-;[D(H)-zT], ( > 0, (29) 

Ot 

D(H) OH -~ = /3(T(H) - Tgas ) + v(t)(H - Hspray), ff = 0, (30) 

OH 
- -  - ~  0, ~ --+ ~ ,  (31)  
o¢ 

where the far-field condition (31) results since, for ~ ,~ (Pe/e)1/2, one expects 

OH 
02 = 0(1). (32) 

3.1. COMMENTS ON THE BOUNDARY LAYER APPROXIMATION 

Terms in equation (29) of up to 1st order (in e 1/2) have been retained, since the 0th-order 
approximation is not very interesting. Due to the scaling all dependent thermodynamic vari- 
ables should be O(1), as should the parameters Tga s and Hsprau; both the boundary layer Biot 
number,/3, and the surface velocity, v(t), are O(e 1/2) as e --+ 0. In a more complete model/3, 
T9~8 and Hsvrau could all be considered to vary with both t and xp, but here these parameters 
will be taken as constant. This is motivated by simplicity and the desire to independently 
investigate the effects of changing v(t). One might also expect that the variations in/3, Tga~ 
and Hspray will not be as extreme as that in v(t), (i.e. there will always be a certain amount 
of heat loss to the gas and the variation in Hspray across the spray cone is relatively small, 
[11, 17]). 

The scanning and rotation movements interact in depositing metal spray at irregular inter- 
vals at point Xp. When xp is not under the spray cone then 

v(t) =0, 

and when Xp is under the spray cone then 

v(t) ~ (epe)l/2rh(rl)g(r'). 

Thus, v(t) has the form of an intermittent pulse. Typically, re(r/) ~ 1 and 9(r') decreases 
monotonically to zero in r' 6 (0, rs), with the conservation condition 

forS r' g(r')dr ' = 1 ,  (33) 
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also being satisfied. Therefore, 9(r I) ,,~ rs  2 in [0, rs), but 9(r ~) is clearly concentrated about 
r '  = 0. Since, rs E [1/3, 2/3] for usual atomising conditions and other process parameters, 
it is clear that quite large surface velocities v(t) can be experienced when deposition comes 
from close to the middle of the spray cone. Thus, although v(t) --+ 0 uniformly in the limit 
e --+ 0, for the finite values of E which are typical of the real process, (e ,,~ 10-3), values 
v(t) = Os(1) are common. This is a further motivation for considering the 1st order terms in 
(29). On a much longer timescale the averaging methods used in [22, 23] indicate that time 
averaged values of v(t), say ~, are O((ePe)1/2), which then balance approximately with the 
O((e/Pe) 1/2) convective cooling term in (30). 

3.1.1. Validity and limitations 

The boundary layer approximation takes a point, xt,, initially at a fixed radial distance from 
the billet axis of rotation and looks at the heat flow in the direction normal to the surface at 
that point. As with all such asymptotic approximations, it is expected to be valid in the spatial 
direction, only for 

( << (Pe) 1/2. (34) 
e 

However, there is now also a further restriction on the validity of the approximation in the 
temporal direction. One reason for this is that the (-axis is fixed to xp, and will therefore 
change its orientation as the surface changes shape. Billet shape changes that are significant in 
the boundary layer will occur on a timescale t ~ (ePe)- 1/2 Thus, if one wishes to investigate 
heat flow at fixed material points along the (-axis, it is required that the total time period, Dr, 
throughout which the boundary layer equations are integrated satisfies 

1 
Dt << (epe)l/2. (35) 

This restriction is also necessitated by the form chosen for v(t). The function v(t) is found 
straightforwardly by considering the deposition which would occur over the rotation timescale 
upon the time averaged billet surface. This is effectively a regular perturbation method, used 
to get an O(e) approximation to the growth on the fast timescale and one can only prove 
this accuracy over an O(1) timescale. Although, one could derive an approximation to the 
instantaneous surface velocity which remains valid over a longer timescale it would be of 
little real value, since the aim here is to look at heat flow at fixed material points under the 
surface. 

A last remark is that one should not expect the boundary layer approximation to be 
valid immediately, during the initial stages of billet growth. In this time period, the collector 
represents a very effective heat sink, particularly when the billet and boundary layer thickness 
are comparable. 

3.1.2. Far-field behaviour and boundedness of H(( ,  t) 

The far-field boundary condition, (31), implies that a constant value for H is approached as 
--+ oo, say H ~ H ~ .  Suppose that H --+ H ~  sufficiently fast for the improper integral 

/5 H(t)  - [H(ff, t) - Hoo] d~, (36) 
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to exist and be differentiable. The functional H is representative of the total heat in the 
boundary layer. The derivative of H(t)  is 

~ H(t )  = -j3(T(H(O, t)) - Tgas) - v ( t ) (H~ - Hsprau), (37) 

from which it is seen that changes in H(t)  result from heat losses to the surrounding gas 
and from convection of heat right through the boundary layer, at speed v (t). The boundary 
layer represents a region of the billet within which transient heat transfer mechanisms are in 
operation during deposition and should not "on average" gain or lose heat. To do so would 
imply a heat source or sink in the boundary layer, which is unrealistic since there are none in 
the billet as a whole and since the boundary layer heat flow is one dimensional. Hence, (37) 
averaged over time should equal zero. If the averaged billet shape F0 is axisymmetric, one 
might reasonably expect the (averaged) heat fluxes within the billet to be axisymmetric and 
the average of (37) is then easily computed. Setting this average equal to zero should give the 
far-field enthalpy H ~  in terms of the average of v (t) and T(H(O, t)); i.e. 

/3(T(H(0, t)) - Tgas) + ~(H~ - Hspray) = 0. (38) 

Consider now the time averaged boundary layer equations 

OHa _OH~ 0 D(Ha OHa 
= - v - - 0 T  + Ot ~ > 0, (39) 

D(Ha) 00-~a - /3(T(Ha) - Tgas) + ~(Ha - H s p r a y ) ,  ~ = 0, (40) 

OHa ~ ~ oo. (41) - 9  0 .  
o¢ 

These equations have a constant steady state solution Ha (4, t) = H, to which solutions from 
arbitrary initial conditions converge to as t -+ c~, in the norm 

/5 E(t)  =- [Ha(~, t) - ~]2 dff. (42) 

The constant H is the unique solution of 

fl(T(-H) - Tgas) + v(-H - gspray) = 0. (43) 

Comparing (43) with (38) it is seen that 

T(g (o , t ) )  > T(H) ~ H a  < H, 

T(H(O,t)) < T(H) =~ Hoo > H. 

The above two possibilities both imply a net flow of heat through the boundary layer, respec- 
tively into and out of the billet, contradicting the far field boundary condition (31). Hence, it 
follows that 

= Hc~ and T(H) = T(H(O, t)), (44) 

i.e. the far field boundary layer enthalpy is determined by averaging the boundary condition 
at~ = 0 .  
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To examine the departure of the transient boundary layer solution from the far-field enthalpy 
H, the norm (42), (with Ha((, t) replaced by H(( ,  t)), is differentiated, giving 

oo 2 -dT (H*)][H(O,t) - ~]2 ~t E(t)  = -  2f0 D(H)[OffI--c]2d(-[v(t)+ fl-d'H 

+ 2[Hsvrav- H][v(t) -~][H(0,  t ) -  HI, (45) 
m 

where H* (t) is between H(0, t) and H. The first two terms in (45) are negative always. The 
third term will be predominantly positive, since periods of time when v(t) > ~ are likely to 
result in H(0, t) > H and v(t) < ~ is likely to result in H(0, t) < H. Thus, fluctuations from 
H may occur. However, since Iv(t) - ~[ is bounded and the second term in (45) is quadratic 
in [H(0, t) - H--] it can be seen that fluctuations from H will be bounded with respect to the 
norm E(t). 

3.2. NUMERICAL SOLUTION 

The boundary layer solution takes the form of a bounded oscillation about the value H. Due to 
the nonlinearity of (29) a numerical solution will be necessary. Because of the axisymmetric 
nature of the billet growth, one is interested mostly in determining the characteristic thermal 
behaviour of points close to the billet surface at different radial distances from the billet axis 
of rotation. 

3.2.1. Presolution algorithm 

Suppose one would like to solve the boundary layer equations at xe( t )  for an short time 
interval At = t2 - tl = O8(1), where tl = Os(e -1) is some time during the process run. 
Two pieces of data are missing. First, at tl initial conditions must be specified and second, 
if xp( t l )  has radial and vertical coordinates (r, z), the azimuthal coordinate ¢0 must also be 
specified. 

It is clearly impossible to impose the "correct" initial conditions at tl, since these are 
completely unknown. However, the boundary layer approximation is in a sense forced by the 
deposition boundary condition. This suggests that a sensible procedure would be to assign 
the far-field enthalpy value H, as initial condition at an earlier time to < tl, and compute 
the numerical solution over the interval [to, t2]. Because (29) is inherently diffusive the initial 
error will decay rapidly with time, (c.f countless linear heat equation analogies), and the 
solution observed at tl should provide a realsitic estimate for the "correct" initial condition. 
The far-field enthalpy H, (= Hoo), is found by solving the nonlinear equation (43). 

In order to specify ¢0, first note that v(t) will vary with choice of ¢0, although its time- 
average ~ depends only on (r, z). Because one wants the solution to be representative of 
the heat fluxes at (r, z) one should choose ¢0 such that the average of v(t) taken over the 
computational interval is equal to ~. Since initial conditions are to be assigned at to the 
computational interval is [to, t2]. Therefore, one finds ¢0 through numerical solution of 

[t2 - to]~ = v(r, z, (90, t) dr. (46) 

When finding the initial condition through solution of (43) and in solving (46) the value of 
is taken at t = tl although, since ~ ,-, e 1/2 and over any Os(1) time interval ~ changes only 
by an amount of O(e3/2), any t E [to, tz] could be used. 
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For a given rotation and scanner motion, one could of course also consider azimuthal 
variations in thermal behaviour, (i.e. dispense with (46) and select ~b0), but the reason for 
doing this is to investigate the asymmetry of the layering over a short time period, which is a 
secondary question. 

3.2.2. Solution algorithm 

Selection of ~b0 and setting initial conditions at to are the presolution algorithm, which must 
be carded out before (29) can be integrated. The presolution algorithm also clearly requires 
computation of the averaged billet growth, by the methods described in [22, 25]. The efficiency 
with which ~b0 is found may be easily monitored; 

'1  /? I (epe)U2 [t2 - to] x ~ -  , v(r,z,d?o,t) dt ,,~ 10 -4, (47) 

being a typical accuracy for the results of this paper. 
For integration of (29) a two-stage, two-level finite difference method is used. This method 

is a simple adaptation of the CPC and MPC predictor-corrector schemes described in [31]. The 
method is consistent and has a local truncation error O(At  2) + O(A(2). Convergence of the 
scheme is not proven here, but the methods used in [31] should straightforwardly demonstrate 
that convergence in the time direction is at least O(At3/2), and is O(A(2) spatially. See [22] 
for a full description of the algorithm. For all the computations presented in this paper a 
mesh spacing A (  = .02 has been used. Further mesh refinement produces little effect, and 
for the far-field boundary conditions imposed there is a negligible departure of the enthalpy 
from its far-field value, computed from (43). The (variable) time step At is chosen so that 
At ,,~ A( ,  but is also shortened during periods when v(t) > 0, in order not to miss the spray 
pulse. The semi-infinite spatial domain, ( E [0, e~) is replaced by the finite computational 
domain ~ E [0, 3]. One important reason for choosing the particular numerical scheme of 
Meek and Norbury over others is that there is no need to evaluate derivatives of the functions 
D(H) and T(H).  This becomes important when these functions have been approximated 
from experimental data. 

4. Computational results 

All following computations use the aluminium alloy in Fig. 2 and Table 1. The Peclet number 
is fixed at Pe = 1.8; nspray = 1.981 is selected to correspond to the spray having on average 
50% liquid fraction on deposition; T~as = -3.755 corresponds to a gas temperature, (close 
to the billet surface), of 200°C. These parameters are believed to be representative of those 
found on production plants. 

4.1. RADIAL HEAT FLOW VARIATIONS 

Here, typical radial heat flow variations are explored. It is assumed that the the underlying 
billet growth is controlled by constant mass flow and withdrawal rates, rh = 1 and u = 1. 
The billet grows towards a steady state of radius rb = 1, see [22, 23, 24]. The boundary layer 
heat flow is computed at four radial distances from the billet axis of rotation, r = 0, 0.25, 0.5 
and 0.75. A time interval corresponding to three rotations of the billet is chosen. 

In Fig. 4a the scanner angle function a(t) is shown. The spray cone axis makes an angle 
a(t) = al + a2a(t) with the ve r t i c a l - z  axis, where here a l  = 35 ° and a2 = 6 °. After 
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averaging, assuming a spray cone radius rs -- 1/3, the shape of the steady state to which the 
billet will grow is shown in Fig. 4b, together with the spray boundaries. It can be seen that, 
apart from a slight "kink" at mid-radius the billet crown is nearly horizontal. For the heat flow 
computations to follow a value e = 10 -3 is assumed and/3 = 0.0187 , , ~  (e/Pe) 1/2, which 
corresponds to hgas "~ 800W/m2/°C for a 0.15m radius billet. In Figs. 4c and 4d are shown 
the locus of the intercept of the spray cone axis (r ~ = 0) with the steady state surface shown 
in Fig. 4b, for a time interval At  = 3; the scanner period has been chosen as ts = 5/17 and 
ts = 7/60, respectively. 

Fig. 5 shows plots of the surface normal velocity v (t) and the billet growth normal to the 
surface, say (g(t): 

/' (9(t) = v(r) dT. (48) 

Figs. 5a, c, e & g compare the averaged and instantaneous billet growth in the normal direction. 
Figs. 5b, d, f & h, show the different functions v(t) computed. At all four radial distances it 
can be seen that the average of v(t) over the full interval corresponds to the averaged growth. 
Also one can see that the velocity pulses v(t) are intermittent and are commonly Os (1). The 
velocity pulse at r = 0, Fig. 5b, is very regular. From Fig. 4c, one can see that the spray 
should hit the centre of the billet 3.4 times each rotation, (imagine a spray cone of radius 
,.~ 1/3 following this locus). The velocity pulses at r = 0.25, 0.5 and 0.75, (Figs. 5d, f & h), 
are much more irregular, but may also be interpretted with reference to the "flower pattern" 
of Fig. 4c. 

Fig. 6 shows heat fluxes at each of the four radial positions. In each of Figs. 6a, b, c & 
d the top part of the figure shows a plot of the computed billet surface temperature T(0, t), 
over the time interval At  = 3, superimposed upon the computed far-field temperature, (recall 
T = 0 is the solidus temperature, T = 1 is the liquidus temperature). In the lower pictures 
have been plotted the effect of the heat flow on the sub-surface billet. In the lower pictures, 
the horizontal axis again denotes time over the interval At  = 3. The vertical axis measures 
distance above the position of the billet surface at t = tl,  i.e. the billet growth has been 
computed from t = tl and this has been subtracted away from the (-coordinate, so that the 
resulting vertical axis shows the real physical depth (g(t) - (, within the billet. The thick 
black line shows the billet surface position, growing "upwards" in the normal direction during 
this time interval. Below the thick black line have been plotted the isotherms of the computed 
thermal fields. Isotherms are plotted at intervals which correspond to 1% of liquid fraction of 
the alloy, (when semi-solid), and at intervals corresponding to 5% of the freezing range of the 
alloy, (when fully solid). 

Most noticeable in comparing Figs. 5 and 6 is that the surface temperature transient mimics 
the surface normal velocity pulse, as is to be expected. However, fluctuations in surface 
temperature are characterised by sharp rises, due to rapid heating by the metal spray pulse, 
followed by slower decays caused by gradual domination of gas cooling as the pulse dies 
away. That there is no overall rise in surface temperature with time, but rather an oscillation 
about the far field temperature, confirms numerically the analysis of section 3.1.2, leading to 
the definition of H.  

The far-field temperatures at r = 0, 0.25 & 0.75 are almost identical, that at r = 0.5 
is however lower. The reason for this is because the averaged normal velocity at r = 0.5 
is also lower, (compare Fig. 5e with Figs. 5a, c & g). This difference results only from the 
very slight slope of the billet surface at r = 0.5, see Fig. 4b. If the billet is growing with a 
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Fig. 4. a) scanner angle function, a(t);  b) steady state surface, a l  = 35 ° and a2 = 6 °, rs = I /3 ,  g(r') truncated 
normal distribution, dotted lines are spray boundaries, vertical axis measures distance z - z,~ below atomiser 
nozzle; c) Locus of  the intercept of the spray cone axis with the steady state surface shown in b: ts = 5/17; d) 
Locus of  the intercept of the spray cone axis with the steady state surface shown in b: t,  = 7/60.  

steady state crown shape, then at all points where the surface is horizontal the surface normal 
velocity is clearly equal to the withdrawal speed. However, at points where the surface is 
sloped the surface normal velocity is smaller than the withdrawal speed. The change in slope 
in Fig. 4b appears insignificant, but translated into dimensional terms the difference in far 
field temperatures is about 4 - 5°C. 

At the billet centre, Fig. 6a, the small rapid deposition pulses are seen to result in only a very 
small regular penetration of the 4% isotherm into the billet. At greater radial distances, Figs. 6b, 
c & d, the larger surface temperature variations result in much deeper pulse penetration. Also 
noticeable here are the characteristic triangular isotherms during the periods of cooling. 

4.2. CHANGING ROTATION AND SCANNER FREQUENCIES 

One would like to know what the effects are of varying the rotation and scanner frequencies. 
Clearly any variation in either scanner or rotation frequency alone will change the velocity 
pulse pattern experienced at any particular surface point. The range of different possible 
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velocity pulse patterns will then be inexhaustable. Here instead, the two parameters are 
changed together. This has the effect of  varying c, whilst leaving other parameters unchanged, 
i.e. "What happens if we speed up the rotation/scanning?". 

Here identical computations to those in section 4.1 have been carried out for the two 
values c = 3 x 10 -3 and e = 3.333 x 10 -4. To maintain the same physical cooling effect, 
the boundary layer Biot number for the two values of e is adjusted to fl = 0.03244 and 

-- 0.01081, respectively. All other parameters remain unchanged. 
Variation of  e has two effects on the physical interpretation of results from the boundary 

layer approximation. Firstly, the physical timescale is proportional to e. Secondly, the physical 
length-scale is proportional to c 1/2. In the following computations the same physical time 
interval is retained for both values of ~, corresponding to one and nine rotation periods for 

= 3 x 10 -3 and ~ = 3.333 x 10 -4, respectively. For the plots of the sub-surface isotherms, 
the physical length-scale corresponding to E = 3 x 10 -3 will be three times as large as that 
corresponding to ~ = 3.333 x 10 -4. 

Fig. 7 shows the variation in far field temperature, surface temperature and sub-surface 
heat flow at radial positions r = 0, 0.25, 0.5 and 0.75, for e = 3 x 10 -3, computed over a 
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Fig. 6. Surface and far-field temperatures, billet growth and sub-surface isotherms: a) r = 0, b) r = 0.25,  c) 
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time interval At = 1. Fig. 8 shows the same results for ~ = 3.333 x 10 -4 ,  computed over a 
time interval At  = 9. 

The first point to note is that the far field temperatures are the same at each radial position 
for each of the three different values of ~ explored; solution of (43) is independent of c. The 
change in different rotation and scanner rates has two effects on the boundary layer heat flow. 
Firstly, for smaller ~ the surface temperature fluctuations become shorter and more frequent, 
with the amplitude of fluctuations about the far-field temperatures becoming smaller. Secondly, 
below the billet surface the depth of penetration of the thermal pulses is also significantly 
reduced with E. This is particularly noticeable at the billet centre, Figs. 7a and 8a, where for 
small ~ the boundary layer temperature becomes nearly constant. For the larger value of c 
it is apparent that the effects from one thermal spray pulse can persist until the next pulse 
arrives. Additionally, the long pulse duration can allow considerable fluctuations in the surface 
temperature to occur, (e.g. Fig. 7d). 

4.3. CHANGES IN CROWN SHAPE 

The billet crown shape illustrated in Fig. 4b is special, in being nearly horizontal for nearly 
the entire billet radius. In practice the billet crown shape is usually more convex and changes 
shape, both during a process run and between process runs; concave billet crown shapes are 
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also possible. It is natural to ask how changing crown shapes affect the heat flow close to 
the billet surface. To examine these effects, similar computations to those in section 4.1 have 
been undertaken, but assuming now that the underlying billet shape is different. 

The scanner function c~(t) remains that of Fig. 4a and the atomiser is again scanned through 
the angles al  + ot2a(t), but now scanning ranges Ot 2 = 3 ° and a2 = 9 ° are employed. The 
spray cone radius is kept at rs = 1/3, also ts = 5/17 and e = 10 -3. As before, constant 
mass flow rates and withdrawal rates, rh -- 1 and u -- 1, are assumed. After an Os (e-  1 ) time 
interval the averaged billet growth grows towards the steady state shapes shown in Figs. 9a 
& b, and the boundary layer heat flow is then computed for a time interval At = 3. 

It can be seen that the change in scanning range produces a considerable change in billet 
shape. For the 3 ° scanning range the steady crown is largely concave, whilst for the 9 ° 
scanning range it is convex. The boundary layer heat flow for the concave and convex steady 
states is shown in Figs. 10 and 11, respectively, again computed at the four radial distances 
r = 0, 0.25, 0.5 & 0.75. 

First note that in both cases there is a considerable change in the surface normal vector 
as r increases. The "flower pattern" picture Fig. 4c, if drawn for both surfaces in Fig. 9 is 
quite similar. Thus, not surprisingly, Figs. 10a and 1 la are almost identical, (see also Fig. 6a). 
Close to r -- 0 the surface is horizontal and at r -- 0 the averaged surface normal velocity 
is identically (ePe)1/2 in each case. Therefore the far-field temperatures are identical. Note 
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that i f  non-s teady  averaged growth were  considered,  one  wou ld  be able to ach ieve  different 
far-field temperatures.  

Variations in boundary layer heat f low between  Figs.  10b, c & d are not  great. The  s lope o f  

the bil let surface is steeper at r = 0.5,  and this is reflected in the lower  far-field temperature. 
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The penetration depths of the heating spray pulses are approximately the same in each case, 
but at r = 0.75 the spray is delivered less frequently and this allows a very deep cooling pulse 
between depositions. 

In sharp contrast to Figs. 10b, c & d, there are considerable differences in the boundary 
layer heat flow between Figs. 1 lb, c & d. At radial distances of r = 0.25 and r = 0.75 the 
billet crown is not particularly steep and the heat flow is quite similar to that shown in Figs. 10b 
& d. In Fig. 1 lc there is a massive fall in the far-field temperature, due solely to the steep 
slope of  the billet crown. Between deposition periods the billet surface cools to about 25°C 
below the solidus temperature, and then rises 15 - 20°C above solidus during deposition. This 
seemingly massive temperature fluctuation is explained by the ratio L/~AT .,~ 3; i.e. above 
the solidus temperature a given temperature fluctuation requires a corresponding internal 
energy fluctuation ~ 4 times as large as it would below the solidus temperanre. Thus, the 
energy fluctuations at r = 0.5 are not so different to those found at r = 0.25 & 0.75, although 
the temperature fluctuation is considerable. 
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r = 0.5,  d) r = 0.75.  Al l  figures: A t  = 3, ts = 5 / 1 7 ,  c = 10 -3 ,  O~l = 35 °,  a2 = 9 °. 

4.4. C H A N G I N G  t s  

In all the previous results the ratio of scanner to rotation periods ts has been kept constant. 
Although it is not sensible to change ts on-line, it is of  interest to examine whether one can 
change ts so that v(t) is altered at some radial positions and not at others. 

In section 4.2 it was shown that by changing e one could, in a fairly uniform way, affect 
the penetration depths and pulse durations across the full radius of the billet. It is assumed that 
a certain amount of  reheating/remelting is good for the billet microstructure, since otherwise 
one must deposit exactly the right amount of spray in exactly the right condition at each point. 
At the billet centre r = 0 the frequent regular pulses do not penetrate very far below the 
surface, and this restricts the range of variation in e which it is practical to make. 

Ideally, one would therefore like to make the typical pulse pattern more similar, (i.e. in 
terms of length and duration), at different radial positions on the billet surface, so that one can 
vary e and control the changes in heat flow uniformly across the billet surface. Really, one 
would like to do this in a way that is somehow optimal, but here "optimal" is rather hard to 
define. Instead it is shown what sort of effects can be achieved very simply. Fig. 12 shows the 
"flower pattern" that results from a ts = 10/11, with the same steady state as in Fig. 4b. 

Following this simple change, it can be seen from Fig. 12 that the centre of the billet will 
be hit by the spray about once on every rotation, whilst most other points will be hit either 
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Fig. 12. Locus of the intercept of the spray cone axis with the steady state surface shown in Fig. 4b: t8 = 10/11; 
(~: = 35 °, (~2 = 6 °. 
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Fig. 13. Surface and far-field temperatures, billet growth and sub-surface isotherms: a) r = 0, b) r = 0.25,  c) 
r = 0.5,  d) r = 0.75.  All  figures: A t  = 3, t8 = 10 /11 ,  ~ = 10 -3 ,  c~l = 35 ° ,  c~2 = 6 ° .  

zero or one times per rotation. The difference on the boundary layer heat flow is shown in 
Fig. 13; similar penetration depths and pulse durations now result at each radial distance. 



Solidification of aluminium spray-formed billets 439 

5. Discussion 

The main thrust of this paper has been to use a thermal boundary layer analysis to investigate 
questions of practical interest for an industrial metal forming process. The mathematical 
interest of the paper is two-fold. First, the model combines an asymptotic approximation to 
the fast timescale movement of the billet surface, (which is essentially an averaging method), 
with an asymptotic approximation to the heat flow near to the billet surface, (a boundary layer 
approximation). It is only for Pe = Os (1), (and of course e << 1), that the process timescales 
and length-scales invite this form of coupled approximation. Empirical evidence and heuristic 
argument for why Pe = Os (1) have been given. 

The second point of mathematical interest is that the boundary layer approximation has 
been made with the boundary layer thickness measured in the direction normal to a boundary 
which is itself slowly moving. This slow movement means that the material coordinates of 
points within the boundary layer change after a significantly long time, and so the boundary 
layer approximation is expected to be only valid for short time intervals. This feature has 
not been seen by the author before, (although it seems likely that it is shared by other 
problems). Matching of the boundary layer approximation with an outer expansion has not 
been undertaken, since the boundary layer approximation has proven to be a very useful tool 
on its own. 

The computational economy of the boundary layer approximation can not be under- 
stressed; this is the main motivation for the method. Using the boundary layer approximation 
requires the following steps. (i) The solution of the slow-time billet growth equations: a 
first order partial differential equation integrated over an O(1) slow-time interval. (ii) The 
solution of one nonlinear equation to find a suitable azimuthal angle for boundary layer com- 
putation. (iii) The solution of another nonlinear equation to set the initial conditions. (iv) 
Finally, the integration of a one-dimensional nonlinear parabolic partial differential equation, 
over an O(1 ) fast-time interval. To answer similar questions regarding sub-surface heat flow, 
without utilising boundary layer and averaging approximations, requires the integration of a 
three-dimensional nonlinear parabolic equation within an expanding domain, over an O(c-1 ) 
fast-time interval. 

5.1. PHYSICAL RELEVANCE 

Before discussing the computed results, the utility of the boundary layer approximation is 
considered in a slightly wider sense. Considered dimensionally, the boundary layer length- 
scale is ,-~ R(e/Pe) 1/2 which for a 0.15m radius billet is of the order of 3-4 millimetres. 
Semi-solid spray droplets with mean diameter ~ 80#m which hit the surface can be estimated 
to "splat" to thicknesses in the approximate range 6 

5 - 10 #m, 

(see discussion in [22]). Thus, the scale of isotherm penetration that has been seen in the 
numerical results, suggests that remelting and refreezing processes occur across 

,,~ 102, 

flattened layers of deposited droplets. This implies some validity in (implicitly) using the 
continuum hypothesis over the boundary layer length-scale. One could argue that in certain 
cases such an hypothesis breaks down at the splat length-scale. This might be true, for example, 
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when deposition conditions are "too dry" and significant intersticial porosity develops. In this 
case one perhaps needs to consider modifying the thermal conductivity to account for inter- 
splat thermal contact resistance and/or abandoning the continuum hypothesis altogether and 
computing on the splat scale. Fortunately, in billet spray-forming such microstructures are 
usually only found close to the collector, where there is extremely rapid cooling of the spray 
initially deposited. 

A second comment here is to note that the dimensional cooling rates of the surface following 
spray deposition are ,,~ 102 - 103°C/s; i.e. just bordering on the cooling regimes which are 
found in other rapid solidification processes. Droplet cooling rates of ,~ 103°C/s and larger 
are known to exist in the spray, [32, 33], whereas cooling rates ,-~ l°C/s can be estimated for 
the bulk billet. Therefore, this suggests that the (near) rapid solidification regime extends into 
the boundary layer, and it is only deeper below the billet surface that the much slower cooling 
takes over. Previous modelling of spray-forming processes has not really exposed this feature, 
since it has generally considered continuous deposition from the spray and/or thin deposits 
have been modelled. 

Lastly, the analogy between the model used here and models of other processes such as 
pulsed laser heating is mentioned, see e.g. [34, 35, 36, 37]. Although there are similarities, 
there are also considerable differences. In particular, the power density levels found in pulsed 
laser heating applications are usually higher than in spray-forming and in spray-forming the 
energy pulse is also a mass pulse. This means that convection is an inherent part of the thermal 
problem in spray-forming. 

5.2. COMPUTED RESULTS 

The first thing that the numerical results clearly illustrate is that the local pattern of deposition 
experienced is extremely complex. One is often tempted to look at simplified cases, (e.g. 
suppose that the deposition is a regular pulse which hits each spot once per rotation). Such 
simplifications made here clearly avoid the tree nature of the problem. 

Different points typically receive an irregular pattern of interspersed large and small 
pulses, except at the centre where regularity is preserved. This complexity can cause problems 
for conventional (qualitative) understanding of the relationship between local deposition 
conditions and subsequent microstructure. Commonly, four different combinations of droplet 
and deposit thermal conditions are distinguished, each of which is related to a characteristic 
microstructure, see [15, 18]. Changes from one microstmctural regime to the next result as 
both the spray and billet become hotter. This qualitative understanding has arisen largely from 
investigating one-dimensional and/or continuously growing thin deposits, where one is able 
to talk sensibly of a uniform "layer thickness" or "growth rate", at all points on the deposit. 
In billet spray-forming, the numerical results have shown that this characterisation is not 
directly applicable. Intermittency and irregularity of the spray pulse mean that a single surface 
location might experience a number of different microstructural regimes in quick succession. 
Correspondingly, porosity levels within spray-formed billets are found to exhibit complex 
local variations which are hard to characterise, [21]. The model approximation used here, at 
the very least, represents a useful tool for trying to understand some of these variations, both 
qualitatively and quantitatively. 
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The results of sections 4.1 and 4.2 are supported by microstructural analysis and experi- 
mental investigations by Mingard, on billets sprayed under quite similar process conditions, 
[21]. Radial variations in porosity have been found at radial distances at which there are 
correspondingly sharp changes in surface gradient. Additionally, variation of rotation rate, 
(through a similar range to that in section 4.2), was found to produce high levels of porosity in 
the deposited material for both unusually high and low rotation rates. The porosity found at the 
high rotation rates seemed to result from a "dry" microstructure, with little bonding between 
layers. At very low rotation rates there was evidence of the porosity being caused by fluid 
instability on the billet surface, with gas pores found in the sprayed deposit on analysis. 

There are two interesting feature of the results in section 4.3. First of all, the implication of 
the large difference between Figs. 1 lb, c & d, is that if the far-field boundary layer temperature 
is significantly below the solidus temperature, (i.e. "cold"), then one should find much noisier 
surface temperature measurements at a surface point than one should find at a point where 
the far-field boundary layer temperature is above the solidus temperature, (i.e. "hot"). The 
second point to be made clear is that the main difference between the boundary layer heat flow 
results in the two billets shown has nothing to do with convexity/concavity of the billet crown. 
For any non-horizontal billet crown, there are clearly going to be differences in the far-field 
boundary layer temperature resulting from changes in the slope of the billet crown. There will 
also be significant changes in the spray enthalpy with flight distance from the atomiser, (in 
this sense the concave billet crown is perhaps worse than the convex billet crown). All these 
variations are in a sense unavoidable. What the results here do show is that large local changes 
in the curvature of the billet crown are bad, (i.e. as in Fig. 1 lc). 

In section 4.4 some simple attempts at improving the uniformity of spray deposition patterns 
across the billet surface were made. What was not explored was the effect that the changes 
made in section 4.4 might have had on the asymmetry of spray deposition, i.e. variation of 
v(t) with choice of 4)0. This represents an area with much potential for systematic future 
development. There are also many other areas open for investigation. Variations in hgas, 7"gas 

^ 

and Hspray have not been explored in this paper, and non-steady averaged growth is also 
interesting to consider. 

A last comment is that since the essential feature of the boundary layer heat flow is that 
it oscillates about it's far-field value, it is of practical value to be able to solve (43) for all 
dimensional parameter values, to give a (computerized) "rule-of-thumb" as to what the effects 
are of changing hgas, Tgas and Hspray at different points on a billet surface. This is not a 
difficult computational task. 
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No~s 

I Deposition/spreading times for individual droplets ~ 10 -6 - 10 -5 s, [28, 29]. Thermal equillibriation between 
droplet and billet occurs over a timescaie ,-~ 10-4s, see in [22]. Both of these are much shorter than other process 
timescales. 

2 Radiation can be estimated to account for less than 10% of the total heat losses. 
3 Data supplied empirically, [30], functions then computed by the methods described in [22]. 
4 The production rig produces several different alloys, and these are produced in batches to reduce the risk 

of cross-contamination of alloying elements. Batches of the same alloy may be separated by a period of months, 
during which time modifications in the process and/or in operating procedures may conceivably occur. This is 
illustrated well in Fig. 3 where the "operational" Peclet number shifts from about 1.8 to about 1.4, between earlier 
and later batches. 

5 Tangential thermal gradient should only result from either thermal gradients deep within the billet, or from 
spatial gradients in any of Bg,,,, Tga,, vzp or H,r, ra~. Each of these should only vary significantly over the 
length-scale of the spray cone radius, rs = Os (1). 

6 Note that although there is typically a wide droplet size range in the spray, the larger droplets are more liquid 
and have more inertia on impact, than the smaller ones. Thus, the "splatted" droplet thickness range is much 
smaller than the droplet diameter range in the spray. 
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